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Abstract. We show that all zero-energy eigenstates of an arbitrarym-state quantum spin chain
Hamiltonian with nearest-neighbour interaction in the bulk and single site boundary terms, which
can also describe the dynamics of stochastic models, can be written as matrix product states.
This means that the weights in these states can be expressed as expectation values in a Fock
representation of an algebra generated by 2m operators fulfillingm2 quadratic relations which
are defined by the Hamiltonian.

1. Introduction

A number of problems in many-particle systems have been studied with the help of so-called
matrix product states. The idea of this technique is to express physical quantities such as
ground-state wavefunctions or correlation functions as products of operators acting on an
auxiliary space and fulfilling algebraic relations defined by the Hamiltonian of the system.
Introduced in the context of lattice animals [1] the technique has been used to find ground
states of various quantum spin chains [2–4].

As was shown by Derridaet al [5], the steady state of the one-species asymmetric
exclusion process with open boundaries can be written as a matrix product state. Later works
study this process in more detail [6–8]. Examples for asymmetric exclusion processes with
two species were investigated in [9, 10] with the help of the same technique. The algebra
used in these studies is generated by as many operators as states a single site can take.
It has the important property that it leads to recurrence relations for the steady state of
systems of different lattice lengths. For other problems this algebra had to be generalized
by enclosing additional operators. This was first done in the study of the dynamics of the
asymmetric exclusion processes [11, 12]. Another example is the algebra for the reaction-
diffusion model studied in [13] which is generated by twice as many operators as the one
from [5]. In this Fock algebra the recursion property is lost. The same is true for the algebra
used in [14–17] for stochastic models with parallel updating.

One natural question that arises is the following: To which kind of problems can the
matrix technique be applied? In other words: Does a Hamiltonian, which describes either a
quantum spin system or a stochastic process, need to have any particular property in order
to have matrix product eigenstates? In this paper we will prove the following proposition.
Any zero energy eigenstate of a Hamiltonian with nearest-neighbour interaction in the bulk
and single-site boundary terms can be written as a matrix product state with respect to the
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Fock algebra (3.2) and (3.3) (see later), which is that of [13].The technique of matrix
product states was called the matrix product ansatz in the literature. What we will see is
that this technique, in the form of (3.2) and (3.3), is not an ansatz but rather an identical
reformulation of the eigenvector equation for the zero-energy eigenstate.

The bulk of the paper is organized as follows. In section 2 we define the class of
Hamiltonians and in section 3 we give the proof of the proposition. We conclude with some
remarks on matrix product techniques in section 4.

2. Definition of a class of models

The Hamiltonian we are going to consider in this paper is of the form

H = h(L) +
N−1∑
j=1

hj,j+1+ h(R) (2.1)

with

h(L) = h(l) ⊗ I⊗(N−1) h(R) = I⊗(N−1) ⊗ h(r) (2.2)

and

hj,j+1 = I⊗(j−1) ⊗ h⊗ I⊗(N−j−1) (2.3)

where I is the (m × m) identity matrix, h is an (m2 × m2) matrix describing a two-site
interaction in the bulk, andh(l), h(r) are (m × m) matrices defining single-site boundary
terms. This kind of Hamiltonian appears in the study of one-dimensional stochastic systems
as well as in the study of quantum spin chains. We will now describe both applications in
more detail.

Stochastic model. Let us consider a one-dimensional lattice withN sites, each of which
can be in either ofm states. A configuration on the lattice is completely defined by the set
of occupation numbers{si} = s1, s2, . . . , sN with si = 1, . . . , m ∀i = 1, . . . , N . The system
evolves stochastically. During an infinitesimal time step dt its configuration{si} can change
to a configuration{s ′i} with a probabilityr({si}, {s ′i}) dt where ther({si}, {s ′i}) are referred
to as rates. This process can be described in terms of a rate equation which reads

∂tP ({si}, t) =
∑
{s ′j 6=si }

[r({s ′i}, {si})P ({s ′i}, t)− r({si}, {s ′i})P ({si}, t)] (2.4)

where P({si}, t) = P(s1, s2, . . . , sN , t) is the probability of finding the configuration
s1, s2, . . . , sN at time t . Throughout this paper we restrict ourselves to dynamics where
the configuration can change only at two adjacent sites at a time and the rate for such a
change depends only on these two sites. The rates are assumed to be independent of the
position in the bulk of system. At the boundaries, i.e. at sites 1 andN , we assume additional
processes to take place.

It is convenient to introduce a vector notation [13] by writing

|P(t)) =
∑
{si }
P(s1, s2, . . . , sN , t)|s1)⊗ |s2)⊗ · · · ⊗ |sN) (2.5)
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In terms of these vectors the rate equation reads

∂t |P(t)) = −H |P(t)) (2.7)

whereH is an (mN × mN) matrix which is defined in terms of the rates. We callH the
Hamiltonian here. For the processes we are studying it has the structure of (2.1)–(2.3). For
stochastic models the matricesH have a particular property: they have to have vanishing
column sums because the total probability has to be conserved. This implies that there is a
zero-energy eigenstate for every lattice lengthN which is just the steady state of the system.
It is denoted by|PN) and obeys the relation

H |PN) = 0. (2.8)

In section 3 we will discuss a representation of these states.

Quantum spin chain. Consider a chain of lengthN with a spins-particle sitting on each
site. Suppose there is an interaction between adjacent particles and some surface fields
acting on sites 1 andN . Then the system dynamics is described by a Schrödinger equation
with a Hamiltonian of type (2.1)–(2.3) if we chose a spins-representation andm = 2s + 1.
The Hamiltonian generally does not have vanishing column sums as in the stochastic case,
although it has to be Hermitian. This condition does not effect the construction of matrix
product states below. Although the physical meaning of the Schrödinger equation is different
from the meaning of the rate equation (2.7) it has the same mathematical structure; just as
for the stochastic model we are often interested in the ground state of the HamiltonianH .

3. Matrix product states

Let us now turn to the matrix product states [5–13]. We introduce an auxiliary vector space
Va and we define 2m operatorsDs andXs with s = 1, 2, . . . , m acting onVa as well as two
vectors|W 〉 and〈V | in Va. (Vectors in the auxiliary space are denoted by| . . .〉, in contrast
to the vectors in the configuration space which are denoted by| . . .).) Next we define a
vector |P̃N ) as

|P̃N ) = 〈W |


D1

D2

.

.

.

Dm



⊗N

|V 〉 (3.1)

where⊗ stands for the direct product in the configuration space, so that the above equation
reads in terms of its components:̃PN(s1, s2, . . . , sN) = 〈W |Ds1Ds2 . . . DsN−1DsN |V 〉. We
call states of type|P̃N ) matrix product states.
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Let H be a Hamiltonian of type (2.1)–(2.3) which has a zero-energy eigenstate for all
lattice lengthsN (a Hamiltonian describing a stochastic model always has this property).
Then we can state the following proposition:

(i) If Ds,Xs and |W 〉, 〈V | fulfil the following relations

h
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D2

.

.

.

Dm

⊗

D1

D2

.

.

.

Dm



 =

X1

X2

.

.

.

Xm
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D2

.

.

.

Dm

−

D1

D2

.

.

.

Dm

⊗

X1

X2

.

.

.

Xm

 (3.2)

〈W |h(l)


D1

D2

.

.

.

Dm

 = −〈W |

X1

X2

.

.

.

Xm

 and h(r)


D1

D2

.

.

.

Dm

 |V 〉 =

X1

X2

.

.

.

Xm

 |V 〉 (3.3)

then the vector|P̃N ) defined by equation (3.1) solves the equation for the zero-energy
eigenstate, i.e.

H |P̃N ) = 0. (3.4)

(ii) For any vector |PN) solving H |PN) = 0 one can find operatorsDs,Xs (s =
1, 2, . . . , m) and vectors〈W |, |V 〉 in some spaceVa, such that|PN) can be represented
as a matrix product state|P̃N ) defined by equation (3.1) and relations (3.2) and (3.3) are
fulfilled in Va.

Before we come to the proof of the statement we stress again that, in contrast to the
algebra defined in [5–7], the relations (3.2) and (3.3) do not lead to recurrence relations for
expectation values of products of different length in the operatorsDs andXs .

The proof of (i) is based on a site-by-site cancellation of terms whenH is applied on
|P̃N ). The mechanism is basically the same as the one worked out in [5]. In the appendix
we explain it in detail.

In order to prove (ii) we construct a representation of operators and vectors fulfilling
the Fock algebra (3.2) and (3.3) using the eigenvectors|PN) of systems with lengths
N = 1, 2, . . . . Let us define for any numberM = 1, 2, . . . an mM -dimensional space
VM with a set of orthogonal basis vectors|s1, s2, . . . , sM〉(si = 1, 2, . . . , m) as well as the
one-dimensional spaceV0 with the basis vector| 〉. We define the spaceVa as the direct
sum of allVM with M = 0, 1, 2, . . . . The above basis vectors may be written as infinite
column vectors with a 1 atposition 1+ s1 + ms2 + m2s3 + · · · + mM−1sM and a 0 at all
other positions, and their transposed〈s1, s2, . . . | can be written as the corresponding row
vectors. Next we define operatorsDs andXs as well as vectors〈W | and |V 〉 by means of
their action on all the|s1, s2, . . . 〉 which provides a matrix representation if we write the
|s1, s2, . . . 〉 as columns. TheDs we define by

Ds1|s2, s3, . . . , sN 〉 = |s1, s2, s3, . . . , sN 〉 (3.5)

for N = 1, 2, . . . andsi = 1, 2, . . . , m. TheXs act on the basis vectors ofVN−1, i.e. on the
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|s1, s2, . . . , sN−1〉, as


X1

X2

.

.

.

Xm

⊗



N − 1 numbers︷ ︸︸ ︷
|1, 1, . . . ,1〉
|1, 1, . . . ,2〉

.

.

.

.

.

|m,m, . . . , m− 1〉
|m,m, . . . , m〉


= [h1,2+ h2,3+ · · · + hN−1,N + h(R)]


D1

D2

.

.

.

Dm



⊗N

| 〉

(3.6)

for N = 1, 2, . . . , wherehi,i+1 andh(R) act on theN -fold tensor product in equation (3.6)
according to their definitions (2.2) and (2.3). Note that each choice ofN gives a different set
of basis vectors in the column on the left-hand side, and taking successivelyN = 1, 2, . . .
all basis vectors will occur in this column exactly once. Hence, the above equation defines
the action of eachXs on each basis vector in a consistent way. The vectors|V 〉 and 〈W |
we define by

|V 〉 = | 〉 (3.7)

〈W |s1, s2, . . . , sN 〉 = PN(s1, s2, . . . , sN) (3.8)

for N = 1, 2, . . . and si = 1, 2, . . . , m, wherePN(s1, s2, . . . , sN) are the components of
|PN). The above definitions fix theDs,Xs and the〈W |, |V 〉 completely up to a constant
〈W | 〉. This constant can be fixed arbitrarily, since it does not enter into any result.

We have to prove now that these operators and vectors lead back to|PN) by means of
equation (3.1), i.e. that|P̃N ) is equal to|PN) and that they obey the Fock algebra (3.2) and
(3.3). Let us begin the first proof by rewriting (3.5) as

Ds1Ds2 . . . DsN | 〉 = |s1, s2, . . . , sN 〉 (3.9)

for N = 1, 2, . . . andsi = 1, 2, . . . , m. (The above relation gives a more intuitive meaning
of the representation we have chosen: a basis vector|s1, s2, . . . , sM〉 is created by applying
the sequenceDs1Ds2 . . . DsM on | 〉.) Furthermore, using (3.8) we get

〈W |Ds1Ds2 . . . DsN | 〉 = PN(s1, s2, . . . , sN) (3.10)

for N = 1, 2, . . . andsi = 1, 2, . . . , m.
Rewriting (3.10) as a direct product of vectors in the configuration space and using

| 〉 = |V 〉 yields

〈W |


D1

D2

.

.

.

Dm



⊗N

|V 〉 = |PN) (3.11)

for N = 1, 2, . . . , which is what we were trying to prove.
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In order to show that the above representation fulfils the algebra (3.2) and (3.3) we
rewrite the definition (3.6) using (3.9) and multiply the column vector

D1

D2

.

.

.

Dm



⊗n

from the left:
D1

D2

.

.

.

Dm



⊗n

⊗


X1

X2

.

.

.

Xm

⊗

D1

D2

.

.

.

Dm



⊗(N−1−n)

| 〉

= [hn+1,n+2+ hn+2,n+3+ · · · + hN−1,N + h(R)]


D1

D2

.

.

.

Dm



⊗N

| 〉 (3.12)

for n = 0, 1, . . . , N − 1 andN = 1, 2, . . . .
The right-hand equation of (3.3) is nothing but the casen = 0, N = 1 of the above

relation. Consequently it holds. Next we use (3.12) to compute


X1

X2

.

.

.

Xm

⊗

D1

D2

.

.

.

Dm



⊗(N−1)

| 〉 −


D1

D2

.

.

.

Dm

⊗

X1

X2

.

.

.

Xm

⊗

D1

D2

.

.

.

Dm



⊗(N−2)

| 〉

= h1,2


D1

D2

.

.

.

Dm



⊗N

| 〉 (3.13)

i.e.


X1

X2

.

.

.

Xm

⊗

D1

D2

.

.

.

Dm

−

D1

D2

.

.

.

Dm

⊗

X1

X2

.

.

.

Xm

− h



D1

D2

.

.

.

Dm

⊗

D1

D2

.

.

.

Dm
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⊗


D1

D2

.

.

.

Dm



⊗(N−2)

| 〉 = 0 (3.14)

for N = 2, 3, . . . .
Since the products of theDs span the whole spaceVa, (3.2) must hold inVa. What

remains to be proven is the left-hand equation of (3.3). We multiply (3.12) forn = 0 by
〈W | from the left and use (3.11):

〈W |


X1

X2

.

.

.

Xm

⊗

D1

D2

.

.

.

Dm



⊗(N−1)

| 〉 = [h1,2+ h2,3+ · · · + hN−1,N + h(R)]|PN). (3.15)

Now writing the Hamiltonian of anN -site system asH = h(L)+h1,2+h2,3+· · ·+hN−1,N+
h(R) and usingH |PN) = 0, the above relation can be written as

〈W |


X1

X2

.

.

.

Xm

⊗

D1

D2

.

.

.

Dm



⊗(N−1)

| 〉 = −h(L)|PN). (3.16)

Using again (3.11) yields

〈W |


h(l)


D1

D2

.

.

.

Dm

+

X1

X2

.

.

.

Xm




⊗


D1

D2

.

.

.

Dm



⊗(N−1)

| 〉 = 0 (3.17)

for N = 1, 2, . . . .
Consequently the left-hand equation of (3.3) holds inVa. This completes the proof that

the matrices defined by (3.5)–(3.8) represent the algebra (3.2) and (3.3) and hence the proof
of proposition (ii).

Let us add some remarks on the proof. We proved that the Fock algebra (3.2) and (3.3)
has a non-trivial representation if an eigenstate with zero energy exists for all lattice lengths.
The construction of the matrices obeying (3.2) can be performed without any demand for
special properties ofH . (An associative algebra generated by 2m generators withm2

quadratic relations is always a well-defined mathematical object.) The special property of
H , i.e. the existence of zero-energy eigenstates|PN(s1, s2, . . . , sN)), was only needed for
the construction of a non-trivial scalar product involving the vectors〈W | and |V 〉. More
precisely, the vectors|PN(s1, s2, . . . , sN)) only enter the definition of the vector〈W | and
the equation which determines〈W | is just the equation for the zero-energy eigenstate.

Due to the lack of recurrence relations the scalar product in (3.2) and (3.3) is not
completely fixed and can be chosen independently in each vector spaceVM . For that reason
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it would be sufficient to require that at least for one lattice lengthN the Hamiltonian has a
zero-energy eigenstate. In that case〈W | is non-trivial only on the subspaceVN .

One may define a finite-dimensionalVa as the direct sum over allVM with M 6 Nmax

for some numberNmax. A matrix representation of the algebra (3.2) and (3.3) can then be
found to be assuming (3.5)–(3.8) forN = 1, 2, . . . , Nmax as well asDs |s1, s2, . . . , sNmax〉 = 0
andXs |s1, s2, . . . , sNmax〉 = 0. Then equation (3.1) provides a matrix product representation
for all eigenvectors|PN) with N 6 Nmax.

It is of course also possible to express the eigenstate of a non-zero eigenvalue as a
matrix product state by adding an appropriate shift to the Hamiltonian. This is done by
replacingh, h(l) andh(r) in equations (3.2) and (3.3) byh− ε, h(l) − ε(l) andh(r) − ε(r),
respectively. In this case the HamiltonianH in (3.4) has to be replaced byH −E(N) with
E(N) = ε(l)+ε(r)+(N−1)ε, if N is the lattice length. The vector|PN) is then an eigenstate
with energyE(N). However, if ε(l), ε(r) and ε are independent ofN , equation (3.4) will
have a non-trivial solution only for a finite number of lattice lengthsN and 〈W | will
therefore be non-trivial only on the corresponding subspacesVN of Va.

4. Concluding remarks

We proved that any zero-energy eigenstate of a Hamiltonian of the form (2.1) can be written
as a matrix product state with respect to the Fock representation of the algebra (3.2) and
(3.3). The proof has been done by showing that the operators as well as the scalar product
can be defined in a non-trivial way. The equations defining the scalar product are exactly
the equations for the zero-energy eigenstate. This shows that by application of the algebra
on an abstract level, i.e. by using only the relations (3.2) and (3.3), one cannot gain any
insight into the form of the eigenstates. One ends up with nothing but a reformulation of
the equation for the zero-energy eigenstate. Therefore the so-calledmatrix product ansatz,
i.e. the application of the Fock algebra (3.2) and (3.3) to an eigenvector problem, is not
really an ansatz; it is an identity. The eigenvector problem is not transformed into another
problem; it remains unchanged. However, the situation becomes different if one considers a
more special form of the algebra as was done in [5–10] where the operatorsXs are replaced
by numbers.

We have checked that our proposition is also true for the Fock algebra describing
stochastic models with parallel updating [14].
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Appendix. Proof of the eigenvalue equation for the matrix product state

Following the line of [5] we prove proposition (i), i.e. we show that the states (3.1) solve
the eigenvalue equation (3.4) if (3.2) and (3.3) are fulfilled. Using definition (2.1) we write

H = h(l) ⊗ I⊗(N−1) +
(N−1)∑
j=1

I⊗(j−1) ⊗ h⊗ I⊗(N−j−1) + I⊗(N−1) ⊗ h(r). (A.1)
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Next we define a state|PN(k)) as

|PN(k)) = 〈W |


D1

D2

.

.

.

Dm



⊗(k−1)

⊗


X1

X2

.

.

.

Xm

⊗

D1

D2

.

.

.

Dm



⊗(N−k)

|V 〉. (A.2)

Applying now the terms occurring in (A.1) on the state

|P̃N ) = 〈W |


D1

D2

.

.

.

Dm



⊗N

|V 〉 (A.3)

yields

h(l) ⊗ I⊗(N−1)|P̃N ) = −|PN(1)) (A.4)

I⊗(j−1) ⊗ h⊗ I⊗(N−j−1)|P̃N ) = |PN(j))− |PN(j + 1)) (A.5)

I⊗(N−1) ⊗ h(r)|P̃N ) = |PN(N)) (A.6)

where the algebra (3.2) and (3.3) was used. Applying now the full operatorH (see
equation (A.1)) on the state|P̃N ) we get

H |P̃N ) = −|PN(1))+
N∑
j=1

(|PN(j))− |PN(j + 1)))+ |PN(N)) = 0 (A.7)

which is what we were trying to show.
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